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The notion of mean dimension was introduced in the 1970s by Tikhomirov. It
determines the mean number of linear dimensions required to identify an element
of a given function class. Tikhomirov then posed the following problem: find the
mean dimension of the unit ball B~ of the space of LP-functions on R" with spectra
inside a given Lebesgue measurable bounded set E. In the language of signal
analysis: determine the amount of linear information carried by generalized
band-limited signals. In this paper Tikhomirov's conjecture on mean dimension is
confirmed in certain important cases and yet shown to fail in certain other cases.
([") 1993 Academic Press, Inc.

1. INTRODUCTION

The mean dimension is one of the averaged characteristics of function
classes on the Euclidean space Rn which arises in approximation theory. It
was introduced in the 1970s by Tikhomirov and studied in [8, 9, 14, 24,
26-28, 32, 40, 41].

The idea of considering averaged characteristics of function classes goes
back to works of Shannon [35,36] and Kolmogorov and Tikhomirov
[16]. They investigated the entropy-like characteristics of classes of
random processes on R 1 (Shannon) and of classes of entire functions
(Kolmogorov and Tikhomirov). The notion of mean dimension is close to
that of the mean entropy. Both of them constitute the mean amount of
information which is necessary to identify an element of the given function
class. The mean dimension shows how economically we can approximate
function classes by finite-dimensional linear subspaces.

Consider a Banach space X and its compact subset A. For every positive
integer m, let L(m) be the collection of all finite-dimensional subspaces L
of X such that dim(L) ~ m. By definition, the Kolmogorov m-widths
{dm(A, X)} of the set A are

dm(A, X) = inf sup inf Ilx - yll x,
LEL(m) XEA yEL
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(see [31]). The value at e> 0 of the inverse function, given by

KAA) = min{m : dm(A, X) ~e},

is called the e-dimension of A. It is easy to see that

45

and

K,(A) --. 00,

m --. 00,

e --+ O.

In many problems of approximation theory on R n we encounter function
classes A which are not compact in a given Lebesgue space LP(Rn),
1~p ~ 00, but have the following property: their restrictions At to the
cubes

t>o, (1)

are compact in LP(C,). In this case we consider the function of two
variables

and study its asymptotic behavior as 1 --+ 00, e --. O.
By definition, the quantities

(2)

and

K~/)(A)= lim inf (21) -n K,(A t ; LP(A,))
t~ 00

are called the mean upper e-dimension and the mean lower e-dimension of
the class A, respectively. If the ordinary limit exists in (2), then its value is
called the mean e-dimension of A and denoted by KE(A). Finally, if the
mean e-dimension KAA) exists for 0 < e < eo. then the limit

K(A) = lim K,(A)
E~O

is called the mean dimension of A.
Suppose a bounded Lebesgue measurable subset E of Rn is given.

Consider the following function class on R n
,

B~= {IE U(Rn) : supp F(!) c E; Ilfllp~ I}, l~p~oo. (3)
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In this definition, F denotes the generalized Fourier transform acting on
the Schwartz space S'(R n

) of tempered distributions, and supp F(f)
denotes the support of the distribution F(f). For f E L I(Rn) we have

F(f)(x) = (2n) -n/2 f f(u) e - ixu duo
Rn

The set E is called the spectral set of the class Bf. By the celebrated
Paley-Wiener theorem (see [17]) the class B~-a,a]' a>O, n= 1, coincides
with the unit ball in the Paley-Wiener space consisting of restrictions to
the real line of entire functions of exponential type a on the complex plane
C, which belong to L 2(R I

) on R I
•

Tikhomirov proved that

K-(BX ) -I
, [ _ a. a] = n a, o< G< 1, a > 0, n = 1

(see [41] for more information; in [16, 38] there is a similar formula for
the mean entropy). Based on this formula, he posed the following problem:
to prove (or to disprove) that for all spectral sets E one has

K(B~) = (2n) -n m(E), 1<,p <,00. (4)

In this equality m denotes the n-dimensional Lebesgue measure over Rn
•

When formula (4) holds it is called Tikhomirov's formula for the class Bf.
The dimensionality problem for the spaces of band-limited functions

originates in classical papers of Landau, Pollak, and Slepian (see Landau's
expository paper [22] for more details). The quantity (2n)-n m(E) plays
an important role in the theory of sampling and interpolation for the
spaces of band-limited functions (see [20J) and coincides with the Nyquist
rate n-Ia in the case E= [-a, aJ, a>O, n = 1.

It is well known that the formula

m~O,

holds for the m-widths, where Am(t) denote the eigenvalues of time and
frequency limiting operators

T,(f)(x) = (2n) -n/2 J f(u) F(xEl(u - x) du, t > 0
[- t, I]n

(see [31, Proposition 2.8], where the case n = 1, E = [ - a, aJ is considered;
the general case is similar).

It follows that for all spectral sets E we have

K,(B~ [ - t, tJn, L 2
[ - t, t]n) = min(m : Am+ l(t) <, £2).
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Hence, we may apply Landau's theorem on the asymptotics of the distri­
bution function of the eigenvalues Am(t) (see [21, Theorem 1]) in our case
and get the formula

R€(B~)= (2n)-n m(E), 0<6<1.

Therefore, Landau's theorem provides the solution to Tikhomirov's
problem in the case p = 2.

Din Dung [8] considered the case of Jordan measurable spectral sets E.
The Jordan measurability of E means that

m(oE)=O,

where oE is the boundary of E. He proved that for such spectral sets

R€(B~) = (2n) -n m(E), l<p<oo. (5)

Formula (5) is true also for p = 1, P = 00 (see [24,26] and Theorem 3.1
below).

Let us now define a more general version of the mean dimension.
Suppose that instead of a constant rate of approximation e in the definition
of mean dimension, we consider a variable rate of approximation given by
some positive non-increasing function <p(t), t > O. For every function class
A on R n as above we define the mean upper <p-dimension and the mean
lower <p-dimension of the class A by

and

R~)(A)= lim inf(2t)-n K",(r)(A,; U(A,»,
(-,x:,

respectively. The mean <p-dimension R",(A) of the class A is given by

R",(A) = lim (2t)-n K",(t)(A,; U(A r»
, ....... (YJ

when the former limit exists. The ordinary mean 6-dimension corresponds
to the function <p(t) = 6, t > 0.

Tikhomirov's problem can be reformulated for the mean cp-dimension as
follows: for which spectral sets E, numbers p, and rates of approximation
cp does the formula

(6)

hold? This is the problem we are dealing with in the present paper.

640751-4
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The paper is organized as follows. In Section 2 some well-known results
are presented.

Section 3 is concerned with the case of Jordan measurable spectral sets.
In Theorem 3.1 we give a sufficient condition for the validity of formula (6)
expressed in terms of the decay rate of the function cp. It is interesting to
note that the logarithmic integral

I( cp ) = Jaw lIn cp( t) I dt
1+ 1

2

arises in this setting. The sufficient condition mentioned above is I( cp ) < 00.

This condition occurs often in problems of function theory and harmonic
analysis (see [17]).

Kowalski and Stenger (see [18,19]) obtained the asymptotic formula

lim Kc(B~ -a, a][ - t, t], L 2[ - t, t]) In In(e)- 1= 1
c_w In(e)-l '

a>O,I>O.

In the proof of this result they used two-sided estimates for the eigenvalues
of time and frequency limiting operators. It is worth noting that our
Theorem 3.1 follows neither from the estimates used in [18,19], nor from
the results on distribution of the eigenvalues of time and frequency limiting
operators obtained by Landau and Widom (see 23]). The known estimates
for the eigenvalues are not sharp enough for our purposes.

In Section 4 we prove that Tikhomirov's formula (4) is not true in the
case 1~ p < 2 for some closed spectral sets. The proof uses the notion of
the set of uniqueness for the Carleman singularity.

In Section 5 some more counterexamples to Tikhomirov's problem in the
case 2 < p ~ 00 are given. It is proved (see Theorem 5.1) that formula (4)
fails to be true for some spectral sets of Lebesgue measure zero. It follows
that formula (4) does not hold for some open spectral sets (see
Corollary 5.2).

Section 6 is concerned with the cases p = 2 and p = 00. We prove that in
these cases formula (6) with I(¢J) < 00 holds for all closed spectral sets
(Theorems 6.1 and 6.2). It is not known whether formula (6) with I(¢J) < 00

holds in the case p = 2 for all spectral sets. As for the case p = 00, the
probable solution to Tikhomirov's problem is

K",(B';j) = (2n)-n m(clos E),

where clos E denotes the closure of the spectral set E, but we were not able
to prove this.
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Suppose n = 1 and E = [ - n, n]. Special examples of functions cp for
which

are

(7)

or

cp(t) = exp{- t [In(1 + t)] ~ 1 - r },

cp(t) = exp{ - t In( 1+ t)[In In(3 + t)] -I - r},

t>O, r >0,

t > 0, r > 0, etc.

(see Theorem 3.1). In Section 7 we prove that for the function

cp(t) =exp{ -(1 + 15) t In(1 + t)}, t> 0,15 >0,

formula (7) does not hold (Theorem 7.1). It would be interesting to find
sharp conditions on the functions cp for which formula (7) holds.

Some of the results given in this paper were announced in [14].

2. PRELIMINARIES

We need some simple properties of Jordan measurable sets. The proofs
of the following lemmas are left as an exercise for the reader.

LEMMA 2.1. (a) Suppose a number € >°and a compact set G c R n are
given. Then there exists a Jordan measurable set G, such that G c G, and

(b) Suppose a number € and a bounded open set 0 c R n are given.
Then there exists a Jordan measurable set 0, such that 0, c 0 and

LEMMA 2.2. Suppose a number € > °and a bounded Jordan measurable
set H c R n are given. Then there exist two sets Ge and D, such that

(1) GecHcD,;

(2) G,=U~=l A j , D,=U~~l B j , where the families {A j } and {B j }

consist of cubes with non-intersecting interiors;

(3) m(De\H)~€, m(H\Ge)~€'
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We make use of a number of known theorems. The first concerns the
widths of finite-dimensional unit balls.

THEOREM 2.3 (Tikhomirov [39J). Let X be a Banach space with the
unit ball B. Then for every L E L(m + 1), m ~ 1, we have

This theorem is frequently used when one needs to obtain lower
estimates for mean dimension.

We also require the use of Blichfeldt's theorem. This well-known asser­
tion provides an estimate for the number of points inside a given Lebesgue
measurable set, which belong to shifts of a given net in R n (see [4, 6J). We
need Blichfeldt's theorem in the following formulation.

Let W denote a net in R n consisting of all points with integral
coordinates. For r>O and XER n denote by W(r, x) the net rW+x.

THEOREM 2.4. Suppose a number e > 0 and a bounded Lebesgue
measurable set EcRn are given. Then there exists r,>O andfor every r<r,
there exists x r ERn such that at least (m(E) - e) r -n points of the net
W(r, x r ) belong to E.

Theorem 2.4 can be easily deduced from the equality

lim f Irn I XE(x+mr)-m(E) Idx=O,
r---+O CI meZn

which is true for all bounded Lebesgue measurable sets E and the unit cube
C 1 defined by (1).

Now we turn our attention to some results concerning LP-functions on
Rn having spectra inside a cube Ca'

THEOREM 2.5. (a) Let fE U(Rn) with 1~p < 00, and supp F(f) c Ca ,

a>O. Then

where cP > 0 depends only on p.

(b) Let fE U(Rn) with 1 <p < 00, and supp F(f) c Ca , a> O. Then

where dp > 0 depends only on p.
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(c) LetfEL1(R") with suppF(f)eCa , a>O. Then

Cb L If(nmJ)I(a+J)-"
mEZ. a +

:::;lIflll:::;co I !f(nmJ)I(a+J)-", 15>0,
mEZ. a +

where Co and Cb depend only on J.
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This theorem is well known. For n = 1 parts (a) and (b) of Theorem 2.5
are due to Plancherei and polya. Part (c) was proved by Wiener (see [5]).
The multi-dimensional case is similar.

THEOREM 2.6 (the general sampling theorem). Let f E U(R") with
1 :::;p:::; 00, and supp F(f) e Ca , a> O. Then for every 0> 0 and every
ex-function g such that g(x) = I for x E Ca' and supp g e Ca + 0 j'l'e have

f(x)=n"(a+o)-" L f( nk~)Fg( nk~_x),
kEZ. a+u a+u

XER", (8)

where the series converges uniformly on compact subsets of R".

The proof of Theorem 2.6 in the case n = 1 can be found in [29]. The
case n > 1 is similar (see also [30]).

In [16], Tikhomirov used the Cartwright sampling formula

n x (nk)( nk ) - 2

f(x)= o(a+o) k~~ocf a+o x- a+8

x sin ( (a + 0) ( x - a~15 ) ) sin ( 8 ( x - a~15 ) ) ,

fEU(R 1
), 1 :::;p:::; 00, supp Ffe [-a, a], a> 0,15 >0,

which is a special case of formula (8).

Remark 2.7. All the definitions and results of this paper can be
translated from the language of approximation theory and the theory of
entire functions into the language of signal analysis. Traces on R I of entire
functions of exponential type correspond to band-limited signals. The mean
dimension can be interpreted as the mean amount of linear information
contained in a signal. It is well known how important sampling formulas
are in signal analysis (see [10, 11], where different sampling formulas have
been obtained).
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3. MEAN q>-DIMENSION AND JORDAN MEASURABLE SPECTRAL SETS

In this section the classes B~ with Jordan measurable spectral sets are
considered. We prove that formula (6) holds for functions q> with
convergent logarithmic integral.

THEOREM 3.1. Let q> be a positive non-increasing function on (0, 00) for
which q>(t) < 1, t> O. Assume that

Then the equality

fo
X Ilnq>(t)ld

-1-+-t--:;2:-- t < 00. (9)

( 10)

holds for all Jordan measurable spectral sets E.

Remark 3.2. The condition imposed on q> in Theorem 3.1 is equivalent
to the condition

q>(t) = exp{ -Q(t)}, t>O, (11 )

where Q is a positive non-decreasing function defined on (0, 00) for which

f
x Q(t)

--2dt< 00.
o 1+ t

(12)

This form of the condition under consideration will be more convenient for
us in the proof of Theorem 3.1.

Remark 3.3. It can be easily checked that Theorem 3.1 does not hold
without additional restrictions on the function q>. This follows from the
equality

lim K,(B~(C,); U(C,) = 00, t > O.
,~o

Proof of Theorem 3.1. We need in the sequel sharp estimates for the
rate of decay of the Fourier transform of a C<f-function. The most general
estimates of this type have been obtained by Beuding [2J and Korevaar
and Luxemburg [25]. Beuding's results constitute the core of the theory of
ultra-distributions (see [2, 3, 34 J). We give a short survey of some results
from [2, 25J.
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Let w be a non-negative function on Rn, continuous at the origin and
such that

w(O) = 0 and w( ( + tT) :%; w( () + w( tT ), ¢, tT E W. (13 )

For example, if 0 is an increasing continuous concave function on [0, r:fJ)
and if 0(0)=0, then the function w(¢)=O(I¢I), (ERn, satisfies (13).

For every w satisfying (13), define a class D w( R n
) as follows. The class

consists of all functions gEL l(Rn) with compact support such that

t. IFg(OI exp{Aw(¢)} d¢ < 00

for all A. > O. Functions g EDw(Rn) are called test functions.

THEOREM 3.4 (Beurling [2]; see also [3]). Let w satisfy (13). Then the
following conditions are equivalent.

(a) (14 )

(b) For each compact K in R n and each neighborhood V
of K there exists gEDw(Rn) such that g(x)= I, xEK,
with supp( g) c V, and 0 :%; g(x) :%; 1 everywhere;

(c) Dw(Rn) is non-trivial.

Let Me denote the set consisting of all continuous non-negative functions
w on R n

, satisfying the following conditions:

(1) w(¢) = 0(1(1), where 0 is an increasing continuous concave
function on [0,00) and 0(0) = 0;

(2) w satisfies (14);

(3) W«()~iXl+iX2In(1+1(1), for (ERn, some real number lXI' and
positive number 1X2'

It follows from Proposition 1.8.6 in [3] that if WE M" then for all
gE Dw(Rn) we have

(15 )

In [25] Korevaar and Luxemburg obtained a stronger result in the
one-dimensional case. They showed that for every a > 0 and for every
non-negative, non-increasing function w satisfying

fo
OC w(x) d
--- X<r:fJ
1+ x 2
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there exists an entire function f(z), z = x + iy E C, of exponential type < a
such that

If(x)1 ~exp{ -w(lxl)},

If 0) satisfies condition 3 above then it can be easily seen that Ff is a
C~-function such that supp(Ff) c [ -a, a].

Let us denote by M the class of functions w on R n satisfying the
following conditions:

(a) w is representable in the form

w(O=.Q(I¢I),

where .Q is a non-negative, non-decreasing function on [0, (0);

(b) 0) satisfies condition 3 above;

(c) 0) satisfies inequality (14).

We prove the following simple generalization of results from [2,25].

LEMMA 3.5. If WE M, then there exists a function g E C~ such that
Jg dx > °and the estimate (15) holds for g and 0).

Proof In [25] Korevaar and Luxemburg considered a function

,X!

f(z) = c n cos CkZ, z E C.
k~l

They proved that for some choice of a positive constant c and of a positive
sequence {ed the function f is entire and has exponential type ~ a.
Moreover, the estimate

If(x)1 ~exp{ -w(lxl)},

holds.
Assumption 3 for the function wallows us to prove that

f(x) = Fg(x), gEC~.

The estimate (15) now follows from the simple fact that for every WE M
there exists an increasing function WE M that majorizes wand satisfies

lim w(x) = 00

x~ 00 w(x)
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(see Lemma 3.7 below, where a stronger result is obtained). It is clear from
the definition of g that Jg dx > O.

In the case n ~ 2, Lemma 3.5 follows from the one-dimensional case by
the following reasoning. Suppose OJ EM. Then the function

r(x)=.Q(n l
/
2 1xl),

belongs to the class M for n = 1. By the one-dimensional result, there exists
a function h E C~(Rl) such that

IFh(x)1 ~c.< exp{ -Xr(x)}, ),>0.

Consider a new function of n variables

g(x) = h(xd'" h(xn ),

It is clear that gE C;{'(Rn
) and

IFg(x)1 ~ c;exp{ - A[r(xd + ... + r(xn )]} ~ C.< exp{ - J,OJ(x)},

which proves Lemma 3.5.

We need one more lemma.

LEMMA 3.6. Let OJ E M. Then for every a> 0, J > 0 there exists a
function ga." E C;{' such that

(a) O~ga,,,(x)~1, XEW;

(b) ga,,,(X)=1,XECa;

(c) supp(ga, ,,) c Ca +,,;
(d) For every J, > 0 there exists a positive constant a;., depending only

on )., such that

Proof It follows from Lemma 3.5 that there exists a function h E C~ for
which

fh dx>O,

and

IFh(~)1 ~ f3;.exp{ -AOJ(~)},
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Fix such a function h and consider convolutions

where X is the characteristic function of the cube Ca + b/2 , and hb(x)=
o-nh(o-Ix ), with 0>0.

Now it is easy to prove that the function ga, ,j satisfies all the required
conditions.

LEMMA 3.7. Suppose Q is a non-decreasing positive function on (0,00)
for which (12) is true. Then there exists an increasing function Q such that
Q(t)~Q(t), t>O, inequality (12) holds for Q, and

lim t-IQ-[(aQ(t»=O
r-- oc,

for all a > O.

The inverse function Q-I in Lemma 3.7 is defined by

Q-I(y) = inf{x: Q(x) > y}.

(16)

Proof of Lemma 3.7. For every integer k there exists an increasing
sequence {ad, 0 ~ k < 00, such that 00 = 0 and

f·
YJ
Q«k+l)t)dt~2-(k+2) k~l.

bk 1+ t2
" ,

It follows that

Define a new function as

Q(t) = (k + 1)-2 2k +2Q«k + 1) t)

for Ok ~ ItI < Ok+ [, k ~O. Then we have

f
w Q(t)

--2dt< 00,
o 1+ t

and the function Q increases and satisfies

Q(t) ~ Q(t).
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Suppose (16) does not hold for some IX. Then there exists a sequence {Ij}
with Ij -+ 00 as j -+ 00, for which

It follows that

(17)

On the other hand, if k(j) is such that (jk(j)~Plj<(jk(j)+l'j~ 1, then
k(j) -+ co as j -+ co and

The last inequality contradicts (17) and Lemma 3.7 is proved.

Let us proceed with the proof of Theorem 3.1. By monotonicity of the
mean dimension with respect to the functions cp we have

It follows that

j«(/)(BP) >- j( (BP)
cp E~ e E' 0<8<1.

(18)

by Din Dung's theorem (see (5)).
Thus, we need only prove the upper estimate for the mean dimension

(19)

where Q(t) = lIn cp(t)/ satisfies all the required conditions and the
additional assumption

Q(t) ~ In(1 + I), I> O.

If the last inequality does not hold for Q, then we consider a new function

e(t) = Q(t) + In(l + t),

for which all the conditions are satisfied.
Now let us define a function w(/)=.Q(lxl), xERn, where.Q corresponds

to Q by Lemma 3.7. Then for every a> 0, 0 < (j < a, there exists a function
ga. 1> satisfying conditions (aH d) of Lemma 3.6.

Suppose fE U(Rn
) with 1<p < co, and supp(Ff) C Ca' By Theorem 2.6

we have
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For the sake of simplicity let us write g instead of ga, b' Our goal is to
obtain an upper estimate for

[(N,I)=! I L (a+J)-nl( nk~)Fg( nk~_x)IPdx,
c, k E AN a + u a + u

where 1>0, N>n-l(a+J)I, AN=zn\cN.
Using Holder's inequality and Theorem 2.5 we get

~c(a+J)-n(p-l) 1I/11~

x t,C~J Fg (a~J-x) Iqr- I

dx, (20)

where q =p(p - 1) -I. In the sequel we let c stand for different positive
constants which may depend on p, n, and Q but do not depend on a, I, J,
and!

Assume 1 <p ~ 2. Using Lemma 3.6 with

A=p-l(n+1)+1

and inequality (20), we obtain

Moreover as

1= nN(a + J) - I,

we have

[(N, I)~C 11/1I~anexp {-PQ(J Ian:J- t I)}
x t, C~. exp {-p-Iq(n+ l)Q(J' a~J-x I)}r- I

dx

~ c 11/11 ~ an exp { - Q ( J Ian:
J

- 1I)}x S,

where S denotes the previous integral.

(21 )
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It is easy to see that

s = Ie, ~ exp { - (n + 1) Q (b Ia~b - x I)} dx

=Ib-nf exp{-(n+l)Q(lvl)}dv
k Dk

~cb-nIf (1+lvl)-n- 1 dv,
k Dk

where

It follows from (22) that

59

(22)

(23)

The foregoing reasoning used the following simple observation: For every
vERn there are at most c(a + br tn points k E zn such that

VEb( C,- a~b).

Using (21) and (23), we obtain

I(N, t) ~ c IIfll: an(a + cit b-ntn exp { -Q (b cn;b - t))}, 1<p~2.

(24)

Suppose a function f E B~a and numbers t> 0, b > 0 are given. Choose
N = N(t) in (24) so that

I(N(t), t) ~ q>(t)P.

Then

(25)

It is easy to see that the (2N(tW-dimensionallinear subspace of U(C,)
with the basis given by

kE CN(t), XE Cn

approximates the class B~J - t, tr with error q>(t).
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Now choose V(t) > 0 so that

with the constant c which appears in (24). Take N(t)= [V(t)] + 1, where
[!] denotes the integral part of!. From (26) we obtain

For large values of t, the inequality Q(t) ~ In(1 + t) yields

N( 1) ~ n ~ I (a + b) t + n - I b - I (a + b) ,Q - I (In(<p( t) - P t n + I)

~ n - I (a + b) t + n - Ib- 1(a + b) ,Q - I (pQ ( t ) + (n + 1) In t)

~n~l(a+b) t+n-1b-1(a+b),Q-l((p+n+ l)Q(t»). (27)

Now the estimate

K(U)(BP ),,::: n -n(a + b)ncp C a -....;::: , a>O, b>O, (28)

follows from (25), (27), and Lemma 3.7.
Finally, (28) yields the required estimate (19), because the left-hand side

of (28) does not depend on D.
Thus

a>O, (29)

by (18) and (19).
Now let us assume E = Cu' a> 0, p> 2. The proof of Theorem 3.1 in this

case proceeds as above but there are some minor differences.
First of all we put

A=p-l(n+ l)(p-l)+ 1

instead of

Using Minkovski's and Holder's inequalities we obtain the following
estimate for the quantity S defined in (21):
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Sl/lP - I) ~ { Ie, (~ exp { - (A - 1) qQ ( 15 1a~ 15 - x I)})P - I dX} I/(p - I)

~ ~{Ie, exp { - (A - 1) pQ ( 15 1a~ 15 - x\)} dx f/(P - 1)

~ {~(Ikl+ l)(n + l)(p - 2)

{ ( I k I)} }l/IP-l)
x Ie, exp - (n + l)(p - 1) Q 15 a: 15 - x dx

{ }

(P-2)/(P-l)

x t(lkl+l)-(n+l)

Hence

S~c15-nL (Ikl + 1)(n+l)(p-2) J exp{ -(n+ l)(p-l)Q(jvl)} dv
k Vk

~cJ-nJexp{ -(n+ l)(p-l)Q(lvl)} dv

where

xL (Ikl + 1)(n + I)(p -2) XDk(V)'
k

(30)

For every vERn there are at most c(a + 15r tn points k E zn for which
v E D k • Moreover, we have the estimate

for such points.
Now it follows from (30) that

S~cJ-n(a+Jr tnf ((a+J) t+J-1(a+J) Ivl)(n+l)(p-2)

xexp{ -(n+ 1)(p-2)Q(lvj)} dv

x (1 + Ivl )-In+ l)(p-I) dv

~ cJ -n(a + Jr tn((at)(n + l)(p- 2) + (15 -la)(n + 1)(p- 2»).
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For fixed a and (j we have
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t> to'

Now we can estimate leN, t) as in the case 1 <p ~ 2. The new value of N(t)
IS

t> to'

In the end we get for the mean upper dimension the estimate

j(U)(BP ):0:::: rr.-n(a + (j)-ncp Co -.....;:::: , a> 0, (j > 0.

This completes the proof of (29) for 1 < p < 00.

The next step consists in proving (10) for all spectral sets E, which can
be represented as finite unions

l~m~M,

m=l

of cubes LI m with non-intersecting interiors.
For every functionfEB~, 1 <p< 00, we have

M

f= L fm,

It is well known that the characteristic functions of cubes are the Fourier
multipliers in U(R n

), 1 <p < 00, that is,

(31 )

(see [36, Theorem 4, Chap. 4]).
Since supp FUm) C LIm' we have supp F(hm) C Cam' where

Therefore, by Theorem 2.6 we get

fm(x) = L f~)(x),
keZ tl
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with

XER", bm~am' 1~m~M,

and
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gm =gum • bm '

Consider an integral

I(N l , ... , Nm , t)

= Ie, Im~ 1 k~4/~7)(X) IP dx,

where Am = Z"\C Nm •

Our next goal is to estimate this integral. We use the same ideas as
before. First we consider the case 1 < P ~ 2. By Holder's inequality,
Theorem 2.5, and Lemma 3.6 with i = (n + 1) p 1 + 1, we get

)
q}P-1

X dx

~c t Ilfmll;J {t I: exp{-;,qW(bm( nk. -x))}
m=l C r m=l kEA m Gm+(jm

}

P-l
• n(q - IIx(am+om) dx.

Let us first consider the simplest case, p = 2. It is clear that

M

I Ilf;" II ~ = IIfll ~ ~ 1.
m= I

Mo 7, I·,

(32)
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Hence for p = 2 we have
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I(N" ..., Nm, t)

~cf. £ eXP{-2Q(JmlanN/~ -tl)}
(/ m=l 1"+ m

xL: exp{-(n+l)Q(oml nk
o

xl)} (all+omtdx
kEA m am + m

~ C I (am + Om)" exp {-Q (Om ( nN/~ - t))}
m=l am + m

xLOm ll f (1+lvl) 1l- 1 dv,
k Dim. k)

where

Therefore,

I(N 1 , ... , N m, t)

M { _ ( (nN ))}~. .~ - n _ - 2n II m,,( L: om (am+O m) t exp -Q Om -t.
m=1 am +<5 m

Now choose Vm(t), 1~ m ~ M, so that

(33)

and put Nm(t) = [Vm(t)J + I, om = ram, 0 < r < 1. Then

N",(t)=[n lam(l+r)t+n 1(l+r)rIQ-l

x(ln(cm(E)(I+rrrlltllcp(t) 2)J+1. (34)

Using (33), we obtain

M

I(N" ..., Nm, t) ~ L (am + Om)1l cp(t)2 (m(E)) I ~ cp(t)2.
nt= I

Now it is easy to get the estimate

M

K'i'(tI(B~(Ct); L2(Cr))~ L (2Nm(t)t·
nl= I

(35)
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For big values of 1 we have from (34)

N m(t) ~ n - lam(l + r) 1+ n - I(l + r) r -lQ - I(In( qJ( I) - 2 til + 1»

~n-lam(l +r) l+n-1(l +r)r lQ-l(2Q(t)+(n+ 1)ln I)

~n-lam(l +r)l+n-'(I +r)r-1Q '((n+3)Q(t)).

Now Lemma 3.7 and the inequality (35) give

K~I(B~.)~(2n) I m(E)(I+r)", r>O.

It follows that
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This proves Theorem 3. I for p = 2 and for spectral sets which are finite
unions of cubes.

The case I < P < 2 is similar. The only difference is that in this case the
inequality (32) is not true, but we may use (31) instead. This gives us the
estimate

Now we can easily complete the proof of Theorem 3. I for 1 < p < 2 and
for spectral sets which are finite unions of cubes, using (33) and (36).

The case p> 2 can be treated similarly.
Thus Theorem 3. I is proved for I < p < wand for all spectral sets which

are finite unions of cubes. Now the case of Jordan measurable spectral
sets in Theorem 3.1 follows by monotonicity of Kcp(BD with respect to
inclusions of spectral sets and by Lemma 2.2.

In the remaining cases p = I, p = 00 we do not have the Fourier multi­
plier theorem (31), but we can use instead the C;-resolutions of identity
{If'm}, such that

M

I If'm(X) = I,
m= l

XEE,
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and

We have
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1~m~M.

M

1= Lim'
m~l

1~m~M.

It is clear that the functions 'Pm are the Fourier multipliers in L1(Rn) and
LXJ(Rn ). Now the proof of Theorem 3.1 in the remaining cases can be
concluded using the same methods as those above.

Remark 3.8. (1) Assume the spectral set E is bounded and closed.
Then by Lemma 2.1 and Theorem 3.1 we have

1~p~ 00.

(2) Assume the spectral set E IS bounded and open. Then by
Lemma 2.1 and Theorem 3.1 we have

1~p~CfJ.

4. THE CASE 1~ P < 2. COUNTEREXAMPLES TO TIKHOMIROY'S FORMULA

In this section we prove that Tikhomirov's formulas (5) and (6) do not
hold in the case 1~ p < 2 for some closed spectral sets. This result can be
easily deduced from the existence of closed sets of uniqueness for the
Carleman singularity.

DEFINITION 4.1. A function IE L I [ - n, n In has the Carleman singu­
larity if its Fourier coefficients emU), mE zn, satisfy

O<p<2.
m

DEFINITION 4.2. A closed set E c [ - n, n In is called the set of unique­
ness for the Carleman singularity if every function IE L I [ - n, nJn such that
l(x)=O, XE [-n, nY\E, has the Carleman singularity.

Katznelson proved in [15J that for n = 1 and for every B, 0 < B < 2n,
there exists a set of uniqueness E, for the Carleman singularity satisfying

m([ -n, nJ\E&)~B.
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A similar result is true for all complete orthonormal systems in L 2[0, I J
(see [7, 12 J; more general results can be found in [13 J). Since the interval
[ - n, nJ with the normalized Lebesgue measure and the torus [- n, n]"
with the normalized n-dimensional Lebesgue measure are isomorphic as
measure spaces, we easily deduce that there exist sets of uniqueness for the
Carleman singularity with respect to the multiple trigonometric system on
[-n, nT'. For such a set E we have

Bi= {O}, I ~p<2,

by Theorem 2.5 and the HausdorfT-Young theorem.
Now we see that formulas (5) and (6) do not hold for the set E because

m(E) > 0 but

1~p < 2.

5. THE CASE 2 <p ~ 00. MORE COUNTEREXAMPLES

In this section we prove that for 2 <p ~ ex; formulas (5) and (6) do not
hold for some spectral sets of Lebesgue measure zero. It is clear that such
a set cannot be closed, because by Remark 3.8 formulas (5) and (6) always
hold for closed spectral sets of measure zero. It follows that formulas (5)
and (6) are not true for some open spectral sets.

THEOREM 5.1. There exists a set Ec [-n, nJ" such that

(a) m(E) =0,

(b) K,(B~.)= I, O<e~ep, 2<p~ 00,

(c) K(B~)=1,2<p~cx;,

(d) KqJ(B~.) = I, 2 <p ~ cx;,

for all functions cp satisfj'ing conditions of Theorem 3.1 and such that
cp(t) -" 0 as t -+cx;.

Proof It is clear that (c) follows from (b). Moreover, we need only
prove that there exists a spectral set E c [11', 11']" of Lebesgue measure zero
such that

K~/'(B~);:' I,

because we have, by Theorem 3.1,

(37)
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It is known that there exists a singular measure Jl over [ -11:, 11:] which
has closed support and satisfies

Il[ -11:,11:] = 1,

L Ick(Jl)II'<uJ,
kE Z

2<p<UJ,

where Ck(ll) denote the Fourier coefficients of the measure Jl (see [33]).
Consider the Cartesian product of n copies of the measure 11 and denote

it by I'. This new measure satisfies

It is clear that

L Ick(V)iP<UJ,
k E zn

2<p<clJ. (38)

m(supp(V)) = o.

Using dilations of measures it is easy to construct a measure ~ with
support in [-11:, 11: r such that

IF~(x)1 ~ L XE[-I,I]". (39)

The measure ~ equals some dilation of the measure v. Moreover, we have

~([ -11:, 11:r)= 1.

By Theorem 2.5 and (38) it follows that

F~ E U'(R"), 2 <p <Y:!. (40)

Suppose j is a positive integer. Consider an n-dimensional net N j of cubes
in [ -11:, 11:r:

For every cube L1 E N j defined by integers k I' ... , k", consider the measure

~J(A)=~(j[(AnL1)-(k" ... ,k,,)])

over the <T-algebra {A} of all Borel subsets of [ -11:, 11:]". Set

E=U U supp(~J)'
j J E NJ

We prove inequality (37) for this set E.
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Consider a family of functions

l(x) = L a,J~,Ax),
,lEN,

where the a A are certain coefficients, It is clear that

where

v(y) =I hkeikx
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(41 )

and the sum in (41) is taken over all k E Z" such that Ik ,I ~j, 1~ I ~ n. In
(41), hk denotes the coefficient a A , where the cube L1 corresponds to
k=(kl,· ..,k ll )·

It follows by 2j-periodicity of v(j IX) that

111\\p={.i" r Iv(y)IP L IF~CV+2kWdy}liP. (42)
• [ 1.1]" kEZ"

Using Theorem 2.5 and the measure )." y E [ -1,1 ]", given by

dA,.(x)=e- iy, d~(x),

we get

kE zn k EZ n kE Zfl

Now (42) implies

}

liP

Iv(y)IP dy j"ip,
l. 1]"

On the other hand, by (39) we have

11/11". [. /.i)" = {j" f Iv(y)1 I' IF~LI')IPdY } 1/"
[ l. I]"

{ , }L."
:? C".}"ip J IV(}' )1" {~V .

[ l. 11"
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Thus
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This inequality shows that the class B~[ - },n ll contains a (2) + 1)11_
dimensional ball of radius Tp= [cp II F~ II p] I. Using Tikhomirov's theorem
on the m-widths of finite-dimensional balls (Theorem 2.3) and (40) we
obtain the required estimate (37) with cp = Tp' 2 <p < oc. The case p = oc
is similar.

It follows easily from Theorem 5.1 that the following assertion holds.

COROLLARY 5.2. For every c5 > 0 there exists an open set E c [ - n, n]"
such that

(a) m(E)~c5,

(b) Kc(B~)=1,0<c<cp,2<p~oc,

(c) K(B~) = 1,2 <p ~oc,

(d) K<p(B~)=1,2<p~Cf),

for all functions <p satisfying conditions of Theorem 3.1 and such that
<p( t) -> 0, t ->XJ.

6. THE CASES p=2 AND p= W.

TIKHOMIROY'S FORMULA IS TRUE FOR CLOSED SPECTRAL SETS

Suppose the spectral set E of a class B~. is closed. Then by the first part
of Remark 3.8 the formula

(43 )

is true for all functions <p, satisfying conditions of Theorem 3.1 and the
additional condition <p(t) ~ CO' as long as the lower estimate

K:li(Bn? (2n) /I m(E) (44)

holds for 0 < t: < Eo' In this section we prove (44) for p = 2 and p = Cf).

THEOREM 6.1. If the spectral set E of a class BT; is closed and if the
function <p sati.ljles conditions of Theorem 3.1, then formula (43) holds.

Proof Without loss of generality we can assume E c [ - n, n]".
As in Section 2 let us consider a net W consisting of all points k E R II

with integral coordinates, and the nets W(r, x) with r > 0, x E R II
• By

Theorem 2.4 for every b > 0 there exists r ,\ > 0 and for every r> rb there
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exists XbEW such that at least (m(E)-c5)r- n points of the net W(r,x,)
belong to E.

Choose k such that k -In ~ r b' Then, using the ideas in the proof of
Theorem 5.1, we can construct appropriate spaces of polynomials and
show that the class B';; [ - k, k]n contains an I-dimensional unit ball
with

It follows from this estimate and from Theorem 2.3 that

K,(B';;[ -k, k]n) ~ (m(E) - (5) k nn-n_1

and

lim inf(2k)-n K,(B';;[ -k, kY) ~ (2n)-n m(E).
k -- ,:0

This gives (44) and Theorem 6.1 follows.

THEOREM 6.2. Suppose a spectral set E of a class B1 is closed. Then
there exists 60 > 0 such that inequality (44) holds for all numbers 6 with
0<6 < 60 , If the function qJ satisfies conditions of Theorem 3.1 and the
additional condition qJ( t) ~ 60, t > 0, then formula (43) holds.

Proof As in Theorem 6.1, without loss of generality we assume
Ec [ -n, n]n.

Suppose e> 0 and .Ie> 0 are given. It is easy to show, using the Lebesgue
density theorem and Egorov's theorem, that there exist a set GeE and a
positive number ro such that

m(E\G) ~.Ie,

m«x+r[O, 1r)nE)~(1-e)rn,

(45)

(46)

By Theorem 2.4, for every c5 > 0 there exists rb with 0 < rb < r0 such that
for every r < rb there exists X, E R n for which at least (m( G) - (5) r - n points
of the net W(r, x r ) belong to G.

Now choose k such that k-1n<rb and let {Yl, ... ,y,} denote the
points of the net W(r, x,) with r = k- In belonging to G. As we men­
tioned above,

640751-6

I~ (m(G) - D) r n
. (47)
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Consider the class of functions

v= {p: l\p\12, [-k,k]"~ l},
1

p(X)= L amFXAmndx ),
m=]

where the {am} are certain coefficients,
Our goal is to estimate lip 112, p E V. By Plancherel's equality and (46) we

have

where we set

1

q(x) = I amFXA,.(X),
nl= 1

It is clear that

jq(x)/ = !FXDk(X)llz(x)/,

where

(48 )

(49)

and Z is a 2k-periodic trigonometrical polynomial with coefficients ab
1~k~l.

For XE [-k, k]n we have

!FXDk(X)1 =c IX I .. ·xnl- I Isin(2k)-1 nx11···lsin(2k)-1 nxnl ~ck-n.

Hence, (49) yields

Iq(x)1 ~ ck- n Iz(x)1

and using Bessel's inequality we obtain

From this estimate and (48), we get, for small values of e,
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Fix such a number e. Then PlanchereI's equality yields
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It follows that the class Ba - k, kr contains an I-dimensional ball of
radius c - J. By Theorem 2.3 and (47), we have

Hence the lower estimate (44) holds for e < c - 1, since (45) is true and the
numbers A. and J are arbitrary.

This completes the proof of Theorem 6.2.

7. NECESSARY CONDITIONS FOR THE FUNCTION q> IN TIKHOMIROY'S FORMULA

Let us consider the case n= 1, E= [-n, n]. By Theorem 3.1 we have

l~p~co, (50)

for every positive non-increasing function q> on (0, co) such that

(1 ) q>( t) < 1, t > 0;

(2) S<f' (lIn q>(t)I/(l + t 2
» dt < 00.

In this section the following problem is discussed: what are exact
conditions on the function q> under which formula (50) holds? The
complete answer to this question is unknown. In what follows we give
examples of functions q> for which formula (50) does not hold. It can be
seen that the gap between the sufficient conditions (1,2) and the examples
given in Theorem 7.1 is not large.

THEOREM 7.1. Assume

q>c(t)=exp{-(1+e)tln(l+t)},

Then

t > 0, e > O.

l~p~co,

and formula (50) does not hold in this case.

Proof Set L1 = [ -n, nJ and for every positive integer m consider the
m-fold convolution

gm = Xd * ... * Xd'
~

m times
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Put
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hm(x) = (2m -1) gm«2m -1) x), XE R I
, m ~ 2.

It follows that supp(hm ) c LJ and

(
nx)mFh m(x)=(nx)-m(2m-l)m sin

2m
_

1
'

Fix k ~ 2 and consider a family of functions

xER I
, m~2.

v = {q(x) Fh l (x), x E R I
, 1= [(2 + e) k] },

where

1-2

q(x) = L ajx
j
,

j~O

xER I
,

and [y] denotes the integral part of y.
Suppose p = 00. The next step in the proof of Theorem 7.1 consists of

estimating II v1100, v E V, provided

Iv(x)1 ~ 1, XE [-k, k]. (51)

We need the following known theorem.

THEOREM 7.2 (S. Bernstein, see [1, p. 323]). Suppose a polynomial

m

q(x) = 1: ajx
j

j~O

satisfies

Then

Iq(x)1 ~ M, -k~x~k.

M (m)j
lajl ~ (2[j12])! k ' O~j~m.

If v E V satisfies (51) then for

q(x) = (Fh{(x)) -I v(x)

we have

I nx 1-' (n)'Iq(x)I~(nlxl){(2/-l)-' sin
21

_
1

~"2' - k ~ x ~ k. (52)
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Now Theorem 7.2 and (52) yield

(1t)' (2 + /; )i
lail ~ 2" (2UI2])!'

Hence, for Ixl >k and 0:= [(1 +/;/2)k] we have, by (53), that

Therefore,

Since

we have
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(53 )

Ixl >k, k>ko, (54)

where /3, 15, and k o are absolute positive constants.
It follows from (51) and (54) that, for k > k o, the class B.7 [ -k, k]

contains an I-dimensional ball of radius

For every <> 0 there exists k I > k o depending only on < such that

Hence by Theorem 2.3

Kq>A+,(B;'[ -k,k])~I~(2+8)k-l,

and

K~L,(BC::)~1+A, <>0.

Theorem 7.1 in the case p = 00 follows from this inequality.
When 1~p < 00 the proof is similar. First, suppose v E V satisfies

II vii p, [- k, k] ~ 1.
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Then
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and

Iq(x)1 ~ (~)' Iv(x)l, -k~x~k,

Ilqlll. [-k. k] ~G), (k Iv(x)1 dx ~ G)' (2k)IIP' Ilvll p, [-k. k]

~(V/(2k)IIP" ~+;,=l.

Define a new polynomial

/-2

z(x)= I U+ 1)-1 ajxj
+ l

.

j=O

It is clear that q(x) = z'(x), and

Iz(x)1 = Iz(x) - z(O)1 ~ (k Iz'(u)1 du = J:kIq(u)1 du

~ (2k) lIP' G)'. -k ~ x ~ k.

By Theorem 7.2

& . lip' (~)/ (2 + e)j
laj l-.,(j+l)(2k) 2 (2[j12])!'

Moreover, reasoning as above we obtain

o~j ~ 1- 2.

where {3, b, and ko are some positive constants depending only on p.
Put r=(l-rx)p-l. Thus we have

where the positive constants p, K, and k 2 depend only on p.
Now the proof of Theorem 7.1 in the case 1~p < 00 can be completed

along the same lines as the proof for p = 00.
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